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1.    Introduction and definitions 

       Let  U  be the class of bounded functions  
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       Let  A  be the class of  analytic  functions of  the form 
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(1.1)  

      Further, let S denote the class of functions in A which are univalent in E. 

      It is well known that every function Sf   has an inverse 1f , defined by 

                                                                     Ezzzff 1  

and                                 
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      Let  f  and g  be two analytic functions in E. Then  f  is said to be subordinate to  g (symbolically 

)gf    if there exists a bounded function    Uzu  , such that      .zugzf   This result is known as 

principle of subordination.   

      A function Af   is said to be bi-univalent in E  if both f  and  1f  are univalent in E.  

     Let   denote the class of bi-univalent functions in E  given by (1.1).  

     Lewin [7] investigated this class   and obtained the bound for the second coefficient of the bi-

univalent functions. Various subclasses of the bi-univalent function class   were introduced and non-

sharp estimates on the first two coefficients 2a
 and 3a

 in the Taylor-Maclaurin series expansion (1.1) 

were found in several recent investigations (see, for example [1,4,6-11] ).   
    Chebyshev polynomials which we are going to use in this work played an important role in applied 

mathematics, numerical analysis and approximation theory. There are four types of Chebyshev 

polynomials but the majority  of  research work dealing with orthogonal polynomials of Chebyshev 

family, contain mostly results of Chebyshev polynomials of first and second kind  xTn  and   xUn . The 

Chebyshev polynomials of first and second kinds are orthogonal for  1,1t  and are defined as below: 

Definition 1.1 The Chebyshev polynomials of  the first kind are defined by the following recurrence 

relation: 

                                                  ,10 tT      ,1 ttT          .2 11 tTttTtT nnn    

The generating function for the Chebyshev polynomials of first kind is given by: 
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Definition 1.2 The Chebyshev polynomials of  the second kind are defined by the following recurrence 

relation: 

                                                  ,10 tU      ,21 ttU          .2 11 tUttUtU nnn    

The generating function for the Chebyshev polynomials of second  kind is given by: 
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The Chebyshev polynomials of  the first and second kind are connected by the following relations: 
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Definition 1.3  For   00   and  ,1,1t  a function   Azf   is said to be in the class  tM ,
  if 

the following conditions are satisfied: 
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where  the function    wfwg 1  is defined by (2.2).    

  Also several subclasses of bi-univalent functions subordinated to Chebyshev polynomials were studied 

by various authors (see [ 2], [4 ], [11 ])                                                        

    In this paper, we use the Chebyshev polynomial expansions to obtain estimates for the initial 

coefficients 2a  and 3a  for the functions in the class  tM ,
 . We also solve Fekete-Szegӧ problem 

for functions in this class.  

2.  Coefficient bounds for the function class  tM ,
     

Theorem 2.1  If     ,, BMzf 
   then 
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and 
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Proof.   As    ,, BMzf 
  from (1.3) and (1.4),  we obtain 
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www.ijcrt.org                                  © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882 

IJCRT1872211 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 320 
 

                                             
   

     wgwwg

wgwwgw









1

2

        ...1 2

21  wvtUwvtU                                 

(2.4)                                          

for some analytic functions where                                                                                           
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It follows from (2.3) and (2.4) that 
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(2.6)                              

On equating the coefficients of z  and 
2z in (2.5) and of w  and 2w in (2.6), we get 
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and 
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(2.9)                        
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(2.7) and (2.9) together gives 

                                                                         11 dc                                                                            

(2.11) 

and 
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Adding (2.8) and (2.10), we get 
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Using (2.12)  in (2.13), we obtain 
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It is well known [  ] that if    1zw  and    ,1wv  then 1jc  and  1jd  for all .Nj             (2.15) 

Also it is obvious from definition (1.2)  that  

                                                             ttU 21   and    .14 2
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So (2.14) gives  (2.1). 

Now subtracting (2.10) from (2.8), we get 
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Using (2.11) in (2.17), it yields 
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Using (2.12), (2.15) and (2.16) in (2.18), we obtain (2.2). 

3.  Fekete-Szegӧ Problem for the function class  tM ,
     

Theorem3.1  If     ,, BMzf 
   then for some ,R  

                                                

 
 

   
 






























214

1
;8

214

1
;

21

2

2

23

hth

h
t

aa
                                                 (3.1) 

where    
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    Proof.  Using (2.14) and (2.18), we get 
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 Hence (3.1) can be easily obtained from  (3.2). 
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